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Abstract

This study aims to use statistical methods to predict the prison population. Using data collected on-line
at [14] from England and Wales, the prison population data were categorized into different sections but
for the purpose of this work, we considered the prison population whose sentence length is 4 years or
more (excluding the indeterminate sentence). To develop a model for prediction, three models were
considered. First, the regression model; second, the SARIMA model (0,2,1)(0,0,1)[12]; and lastly, the
stock-flow model.

The regression model did not produce a good fit as a result of the seasonal and trend patterns in time,
hence, the introduction of the natural cubic spline accounted for it. Diagnostic checking was carried
out on the regression model with the natural cubic spline, the assumption of the population error term
were met, and the QQ-plot also followed a normal distribution. For the time series analysis, an additive
decomposition was made which also revealed the presence of seasonality and trend, hence, an auto.arima
with frequency 12 was used to generate a SARIMA model (0,2,1)(0,0,1)[12]. The model was further
validated using the Ljung-Box test with a p-value of 0.8562, which is highly significant, meaning that the
model does not show a lack of fit. Also, the ACF and PACF of the residual plot had all the lags within
the 95% confidence interval. Finally, using the stock flow model to estimate the inflow of offenders,
their releases as well as the closing stock for a particular period of time.

For an accuracy measure, we compared the test set (prison population from 2011-2016) with the
validation set (prison population of 2017), and afterward, the forecast for the prison population for
January 2018 to March 2019 was made using the three models, see Table 4.14. The SARIMA model
had the smallest RMSE, of 231, the regression model which had 396, and the stock flow had 5795.
The simple stock-flow was further developed by introducing recidivism. Incorporating other factors like
recidivism will be useful for better predictions. Hence, it is practicable to recommend the SARIMA
(0,2,1)(0,0,1)[12] model for predicting the prisons population of sentence length of 4 years or more.
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1. Introduction

Prison, which is also known as a place for correction or detention center is a facility in which inmates
are forcibly kept and denied a variety of freedoms under authority with the purpose highlighted below
[16].

• Retribution :- This is the penalty or sanction on criminals for unlawful acts against society

• Incapacitation :- Removal of criminals from society so that they can no longer harm innocent people

• Recuperation :- Designing activities to reform or rehabilitate criminals into law-abiding citizens.

This project will analyze extensive published data on the prison population to identify the need for future
prison places having known the estimated prisons populations, and also aims to demonstrate the role
statistics can play in a real-world policy problem, and the importance of making recommendations based
on evidence.

1.1 Problem and Summary of data collected from England and Wales

In 2017, there were 86,000 people in prison in England and Wales. Whilst this is an increase of 40%
compared to twenty years ago, these figures have barely changed in the last five years. This project will
analyse extensive published data on the prison population to identify the need for future prison places.
This data was collected online at [14] using data from England and Wales as a start up point, the skills
would be highly transferable to solving other problems. The prison population data is categorized into
different sections; (1) The prison population by type of custody age group and sex, i.e determinate or
indeterminate sentence and also the sentenced length(if it’s determinate). (2) The prison population by
offense group i.e Fraud, robbery, sexual offense etc. (3) Prison population by ethnic group and sex as
well as their admission, sentence length, and release. (4) The prison population by religion and national
status as well as their individual admission sentence length and release date. The data were collected
quarterly, i.e on January 31st 2018, April 30th 2018 e.t.c.

1.2 Characteristics of prison populations

1.2.1 Sentencing. This refers to the punishment ordered by a trial court leading to instant imprison-
ment. This can be divided into 2 categories.

• Determinate sentences:- This is the most common type of prison sentence whereby the court sets
a fixed length or the maximum period of time the offender spends in the prison. e.g Standard
determinate sentence, Extended Determinate Sentence etc.

• Indeterminate sentences:- This is the sentence imposed for a crime without a given definite dura-
tion, i.e individual on whom such sentences are imposed has no guaranteed release date or time.
Examples are, Whole life sentence that is, an imprisonment without the possibility of parole,
which means that release might not be considered; Imprisonment for Public Protection (IPP)
sentence, which is mainly for offenders of age 18 and above who has committed a serious crime
e.g violent or sexual offense, for which the maximum penalty is 10 years and above. This sentence

1
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was introduced by Section 225 of the Criminal Justice Act 2003 which took effect from 2005 and
then was abolished in 2012 [13].

Figure 1.1: Prison Population by Sentence length

Figure 1.1 displays the male and female prison population under immediate custodial by sentence length.
From the graph it is observed that the sentence length of ”4 years or more” had the highest prison
population, while the sentence length of ”6 months but less than 12 months” had the least prison
population.

Figure 1.2: Prison population of Sentence length of 4 years or more

The prison population of sentence length of ”4 years or more” is displayed in Figure 1.2. It is observed
that the population increased with time. As at May 2018, the population was approximately 33,750 but
by May 2019 the population had increased to about 34,750.

1.3 The Time Series Analysis

When faced with real-life instances and we ask questions like what will be the stock price after a month?
What will be the air temperature tomorrow? What will the population of this country be by next year?
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One common factor in all these questions is time. Therefore, data recorded on a timely basis is called
time series data, and the different methods for analyzing this type of data in order to extract meaningful
statistics understands the past as well as predicts the future. In time series analysis, there are different
types of model to choose from. This will be discussed fully in the next chapter.

1.4 The Stock Flow model

There is a need to go beyond just simply analyzing and visualizing the formation of the prison population,
a more powerful procedure or approach that enables us to create a better representative of the system
will allow us to explore its behavior and to test the effect of changes to the system’s formation and the
policies governing its behavior.

(a) Stocks:- This represents a part of a system whose worth at any given instant of time is a function
of the system’s past behavior. This value cannot just be determined by measuring the value of
other parts of the system at that particular time, one way to solve this is by calculating how it
changes at every point in time and adding up these changes [22].

(b) Flows:- This represents the rate at which stock changes at a particular time, an in-flow into the
stock causes the stock to increase while an outflow from the stock causes the stock to decrease
or flow out of a stock (causing it to decrease).

Figure 1.3: A stock flow diagram of prisons population [17]

From Figure 1.3, if the reception is greater than the discharge, then the prison population increases
leading to overcrowding, on the other hand, if the discharge is greater than the reception, the prison
population is reduced. Understanding the variety of the prison population is important to what may
be needed in the future. There are three levers that society can pull (through policy decisions by the
Department of Justice and the courts) [21]. How many offenders are sent to prison (Admission), How
long they stay (Sentence length), and How many were set free (Released).

1.5 Roadmap Of Study

Chapter 1 involves the general introduction which includes the objectives of the study and layout of the
essay. In chapter 2, we would discuss the literature review of previous study on predictions. Chapter
3 involves the statistical methods for predicting prison population; the Regression model, Time Series
model, and the Stock flow model. In chapter 4, the analysis and Results would be discussed and finally
in chapter 5 we give the conclusion and recommendations.



2. Literature Review

2.1 The Need for Making Predictions

Constantly, we consciously or unconsciously predict the future or forecast what might happen, be it a
short term or long term prediction. With this, we have a better chance to control things thereby helping
us make good decisions in accomplishing our set goals and objectives. The ability to predict is finding
the connection between cause and effect. If we can connect the cause of today to the effect that might
happen tomorrow, then we can predict, with this chain, we can give the forecast of what will happen
next week, next month and even years to come. [18]. In this chapter, we will review the literature
of some of the studies done on prediction or forecast, particularly, studies with a focus on population
prediction.

Sandra Evans Skovron [12] assessed public attitudes towards reducing prison crowding through telephone
surveys of adult residents of two major cities: Cincinnati and Columbus, Ohio. The support from
the public was substantial as it was a community-based correction and incentive. Prison construction
received only moderate support while high levels of public disapproval were found for shortening sentences
and increasing parole board authority which was the major cause of prison crowding. The Probit
regression analysis that was conducted on the relationship between support for policies in other to
reduce prison crowding and respondent characteristics revealed that attitudinal variables were more
consistently related to public opinion than were demographic variables, that is, there was a need for
more prison place in other to reduce prison crowding.

Sarah Armstrong from the University of Glasgow alongside Elizabeth Fraser from the Scottish Govern-
ment analytical services [19] projected the prison population. They projected a range of time periods in
order to account for changes in trend over time using the time series analysis based on linear regression
and exponential smoothing. Six variants reflecting the overall trends over the 10 years, 25 years and 40
years term were considered, which best reflects the current situation and the need to compensate for
inherent passing off of the smaller groups with time.

The challenges facing prison managers include questions regarding excessive reliance on imprisonment
as punishment, the appropriateness of the inmates for whom imprisonment is imposed, problems of
crowding, the effectiveness of imprisonment, and the cost of imprisonments. As a result of over-
capacitated coupled with poor ventilation in prison places, tuberculosis (TB) continues to spread in
South African Prison [10]. The Department of Mathematics and Applied Mathematics, University of
the Western Cape, proposed a system dynamic model of demand and supply to describe the population
dynamics of Tuberculosis disease in prisons. This considers the inflow of susceptible into the prison
population and a non-inflow of infected persons into the prison, which will ensure that Tuberculosis can
be eradicated from the prison population. By the simulations generated with the model, it illustrates
how it can be useful in making future projections of the levels of prevalence of Tuberculosis disease,
and to quantify the effect of interventions such as screening, treatment or reduction of transmission
parameter values through improved living conditions for inmates. This model is particularly useful to
the World Health Organization and the governments, for reduction of Tuberculosis disease prevalence
and ultimately eradicating it.

4
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2.2 Application of Stock Flow Model

Many models can be modified with the mind of tracking changes in the location or abundance (the
flow) of one or more ”things” (the stock). i.e The system dynamic modeling. The concept of Stock and
flow model is applied in many fields such as the financial system, flows of produced goods and services
through the real economy, and flows of physical materials through the natural environment. The study
of the CJ Special Interest Group, [15] applied the concept of Stock flow in Forecasting and Model
Development, stating that flows are important because they carry cost implications for the National
Offender Management Service and because they are needed for forecasting the admission of an inmate,
the sentence length, and the release.

The Stock-Flow Model [9] for Forecasting Labor Supply was developed by Chun-pong Sing, and he did
this to estimate the supply of labor in the construction industry. The findings were determined using
a stock-flow model, which enabled the determination of future aging distribution trends and workforce
supply for specific trade types. The inflow of labor is gotten from the idea of transition such as new
entrants, promotion, or transfers etc while the promotion to a specific organization or position generates
the outflow. The developed stock-flow model can be applied in countries where registration schemes
for construction workers are in use.

Fluctuation in housing prices is an extensive circumstance or occurrence which has been repeatedly
observed in many countries. [11] Elizabeth Steiner used a Stock-Flow Model for Housing Market in
Switzerland. With the model, she was able to analyze the major determinants of the Swiss housing by
quantifying the gap existing between the previous supply and the desired level of housing stock, also to
measure the effect of these housing market fluctuations on prices. The model was constructed in such
a way that it was possible to simulate different scenarios in order to forecast potential developments on
the housing market. The demand and supply for housing stock determine the Housing prices and also
influences the flow of residential investment. Higher housing prices gives rise to the need of building
new houses and boost residential investment.

England and Wales have one of the highest incarceration rates in Western Europe. As at December
2007, the prison population was 1.53 for every 100,000 members of the population in England and
Wales. previous studies have shown that population can be predicted using various models, but for the
purpose of this study, We will be predicting the prison population of England and Wales (sentence length
of 4 years or more) using one of the three models that would be considered in subsequent chapters.



3. Methodology

3.1 Research Design

In this study, three methods would be used to predict the prison population, Regression model, Time
Series model and the Stock Flow model.

3.2 The Time Series Model

A time plot or a time series graph basically displays values against time. Although it is similar to the
x-y graphs, while an x-y graph plots varieties of ”x” variables e.g price, age, heights etc, a time plots
only displays time on the x-axis. The aim of time series analysis is to identify patterns in the data and
then use the data for predictions. Before we move on, we need to discuss some important components
described by most time series data and these include trend, seasonality, and noise [23].

1. Trend:- This is a variation that moves up or down in a reasonably predictable pattern over time
and does not repeat

2. Seasonality:- A systematic linear or nonlinear characteristic of a time series in which the data
experiences regular and predictable pattern that recurs or repeats over a one-year period.

3. Noise:- A time series data is white noise if the variables are independent and identically distributed
with a mean of zero. This implies that each value has a zero correlation with all other values in
the series, and that all variables have the same variance.

3.3 Stationarity in Time Series

Stationarity is when the statistical properties of a process generating a time series do not change over
time, although it does not mean that the series does not change over time, it is just that the way it
changes does not itself change over time, for example, let’s consider a linear function, y = 2x, the value
of y changes as x grows, but the way it changes remains constant. Hence, in time series a stationary
process has the property of the mean, variance and autocorrelation structure being constant, i.e they
do not change over time. Not all time series data are stationary, but for proper prediction and forecast,
we need a stationary time series data.

Assumptions:-

1. Constant mean: E(yt) = µ, ∀t.

2. Constant variance: var(yt) = γ(0) = σ2, ∀t

3. Non correlated: Cor(yt1 , ytt−1) = γ[t1, tt−1], ∀t

6
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3.4 To Check for Nonstationarity

1. Run sequence Plots:- Plotting a run sequence plot to see if there is anything like trends or
seasonality. e.g a correlogram, box plot, line plot etc.

2. Run Summary Statistics:- Dividing the data into intervals and checking for clear or significant
differences in the summary statistics of subdivided data sets. let’s take a look at an example below

Figure 3.1: Sentenced length of 12 months to less than 4 years

From Figure 3.1, it is observed that there is a downward trend as time goes by, and we can also observe
seasonality of similar shape in each year.

3.5 How to Cater for Stationarity

If we discover that a time series data is not stationary, we can often transform into stationarity by
applying one of the following techniques.

1. Creating a new series:- This is called differencing the data set. Given a series Xt we can create
a new series. i.e

X ′t = Xt −Xt−1 (3.5.1)

In this method, the differenced data will contain one less point than the original data set. Although
this can be done more than once, one or two differencing is often sufficient.
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2. The Residual plot:- Modeling the residuals from the fitted plot is helpful in removing long term
trend, a simple fit, i.e the straight line is often used.

3. Series Transformation :- To account for non-constant variance, taking the logarithm or the
square root of the data can help stabilize the variance. For negative data, you can add a suit-
able constant to make all the data positive before applying the transformation. This introduced
constant can then be subtracted from the model to obtain predicted (i.e. the fitted) values and
forecasts for future points [20].

3.6 Models in Time Series

1. AutoRegressive Models AR(p):- An autoregressive model can be viewed as a representation of
a type of random process, where the output variable depends linearly on its own previous values.
Due to the randomness, predictions might not be 100 percent accurate, although most times, the
process gets ”close enough” for it to be useful in most scenarios [2]. The value for ”p” is known
as the order. e.g, an AR(1) would be called a first-order autoregressive process. The outcome
variable in the AR(1) process at some point in time t is related only to time periods that are one
period apart i.e. the value of the variable at t-1. AR(2) or AR(3) process would be related to
data two or three periods apart. This is given as

Xt = c+ α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + et (3.6.1)

Where:

• Xt−1, Xt−2, · · ·Xt−p are the past series values also known as lags;

• et is white noise (i.e. randomness);

• α1, α2, are weights measuring the influence of these preceding values on the value Xt, and c
is a constant.

2. Moving Average Models MA(q):- This is the approach for modeling univariate time series.
This model specifies that the output variable depends linearly on the current and various past
values, as in the case of AR(P), the value for ”q” is known as the order. e.g

Xt = c+ α1et−1 + α2et−2 + · · ·+ αqet−q + et (3.6.2)

Where at a particular time t, the process takes the value Xt which is modeled as the current point
in the white noise et and a constant aq multiplied by the previous noise value et−q. Note that
noise points are assumed to be independent and identically distributed i.e it follows a Gaussian
Normal distribution with mean 0 and variance σ2. The basic difference between AR(p) model and
MA(p) model is that the covariance between X(t) and X(t−n) is zero for MA models. But that
of the AR model gradually declines as n increases, meaning that the MA model does not predict
the future using the past, but rather it uses the error from the past. However, the AR model uses
past forecasts to predict future values.

3. AutoRegressive Moving Average models ARMA(p,q):- The combination of both AR and MA
model is known as the ARMA model. Since an ARMA model is a stationary model, but working
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with a model that isn’t stationary, one can achieve stationarity by taking a series of differences.
This difference changes an ARMA model to the ARIMA model. The ”I” in the ARIMA model
stands for integration or differencing; it measures the amount of nonseasonal differences that are
needed to achieve stationarity. If no differencing is involved in the model, then it becomes simply
an ARMA.

However, ARIMA(p,d,q) also known as the Box-Jenkins model is an ARMA(p,q) model (3.6.3)
which has been differenced d times in order to fit or achieve stationarity. The choice of p,d, and q
can be selected with a wide range of methods, including AIC, BIC, and empirical autocorrelations.
[3]

Xt = c+ et +

p∑
i=1

αiXt−i +

q∑
i=1

βiet−i (3.6.3)

Where:

• αi are the autoregressive model’s parameters;

• βi are the moving average model’s parameters;

• c is a constant;

• et is the error terms (white noise).

3.7 Correlation Function

There are two major types of Correlation Functions namely:

(a) AutoCorrelation Function:- In time series, the ACF explains the degree of similarity between
the values of the same variables over successive time intervals. This is diagnosed by using a
correlogram (ACF plot). If the existence of autocorrelation is detected in a model, it implies
that the model is misspecified, i.e something is wrong with the model, maybe there are some
key variable or variables that are missing from the model [7].

The autocorrelation at time lag zero, can be written as ACF(0)=1 meaning that the data
is perfectly correlated with itself, ACF(1)=0.9 implies that the correlation between a point
and the next point is 0.9, ACF(2)= 4 suggests that the correlation between a point and a
point with 2 time lags or time steps ahead is 0.4. Hence, the ACF tells you how correlated
points are with each other, based on how many time steps they are separated by [5]. This is
a common tool used for identifying the order of an Moving Average model.

(b) PartialAutoCorrelation Function:- Partial autocorrelation plots are a commonly used tool
for identifying the order of an autoregressive model. They are basically used to measure the
degree of association between Yt and Yt−p, when the effects at the other time lags ( i.e
the intermediaries ) eg 1, 2, 3, · · · (p − 1) are all removed. Since there is no intermediaries
dependence, In principal, PACF and ACF at lag 1 are equal. The ACF for a stationary time
series Yt is equal to the autocorrelation, so ACF(1) = Corr(Yt, Yt−1) = PACF(1).
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3.8 Diagnostic Checking

To avoid over fitting, we need to subject the model to a series of statistical tests, this is to ensure
that this model adequately describes the time series under consideration; all of this process is known as
Diagnostic Checking. For this study, we shall be considering two types of diagnostic checking.

1. Akaike Information Criterion:- Using the values of AIC/BIC/SBIC, the model with the lowest
value of the above criterion is chosen as the best model, as the AIC compares the quality of a set
of statistical models to each other.

AIC = −2(loglikelihood) + 2K

• K is the number of model parameters i.e the variables in the model as well as the intercept.

• Log-likelihood usually obtained from the statistical output is a measure of model fit. The
higher the number, the better the fit.

2. Ljung-Box Test:- This hypothesis tests whether a set of autocorrelations of a fitted time series
model differs significantly from zero, i.e whether or not the errors are independently identical. It
essentially tests for lack of fit, such that if the autocorrelations of the residuals are very small,
then we conclude that the model doesn’t show significant lack of fit’.

Hypothesis:-

H0:- The correlations between the population series values are zero. i.e the model is fine.

H1:- The correlations between the population series values are not zero. i.e the model is not fine

P (m) = n(n+ 2)
m∑
i=1

R2
i

n− i
(3.8.1)

Ri Is the sample autocorrelations at lag i, m is the number of lags under the test, n is the length
of the time series sample.

Decision Rule:-

For a chi-squared distribution with h degrees of freedom at the 100(1−α)th percentile. We reject
H0 if

P (m) > X2
α,h

Concluding that the correlations between the population series values are zero. i.e the model
is fine and does not show a lack of fit. Also, a significant p-value in this test rejects the null
hypothesis that the time series isn’t autocorrelated.
For the purpose of this study, we will be using a statistical software ”R”, to implement the
Ljung-Box Test with the Box.test function.

3. Forecast Accuracy:- After getting the right model, the next thing is to make a forecast, but
one way to evaluate the forecast’s accuracy is by comparing the forecast to the past actual data,
thus, it is necessary to assume that a forecast will be as accurate as it has been in the past, and
that future accuracy of a forecast can be guaranteed. This can be done by calculating 3 different
measures.
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(a) Mean Absolute Error (MAE):-”Error” which does not necessarily mean mistake but the
unpredicted part of an observation. MAE is defined as the absolute value of the difference
between the forecasted value and the actual value. MAE shows how big the error we can
expect from the forecast on average. For a time series analysis the (MAE) can also be seen as
the Forecast Error i.e the difference between the actual and the predicted or forecast value
of a time series [8]. Hence, the smaller the MEA, the better the prediction. MAE is given as:-

MAE = e(t) =
n∑
i=1

∣∣yi − xi∣∣
Where:

• e(t) is the forecast error;

• xi is the actual value;

• yi is the forecast value.

Sometimes it is always difficult to tell how big an error is, hence, it is better to find the mean
absolute error in percentage terms.

(b) Mean Absolute Percentage Error (MAPE):- This is the percentage form of the (MAE).
it is given as:

MAPE =
100%

n

n∑
t=1

∣∣∣∣At − PtAt

∣∣∣∣
Where:

• At is the actual error;

• Pt is the predicted or forecasted value.

Although (MAPE) allows us to compare forecasts of different series in different scales unlike
the MA, but it is some-worth limited in the sense that, it is undefined when we have one of
the actual value to be zero, also it may not really account for large errors, so to adjust for
large errors we consider the nest text.

(c) Root Mean Square Error (RMSE):- This is also known as the standard deviation of the
residuals or prediction errors. Since residual is a measure of how far data points are from
the regression line, hence RMSE measures how these residuals spread out. i.e it enables us
to know how close the data is around the line of best fit.

RMSD(θ̂) =

√
MSE(θ̂) =

√∑T
t=1(ŷt − yt)2

T

Where ŷt is the predicted values for time t of a regression dependent variable yt over T
different prediction.



4. Analysis and Discussion

4.1 Data presentation

The focus of this chapter is to conduct a descriptive analysis as well as a predictive analysis. To start
with, we need to get the summary of the data and also perform some data visualization after which we
begin with a simple model (Linear Regression Model) after which we move to the (Time Series), and
finally, (Stock Flow model). and then make forecast or predictions.

4.2 Date preparation, Exploration and Visualization

This data was collected online at [14] from England and Wales, it consists of the prison population by
type of custody, age group, and sex and it was collected monthly, beginning from 31 January 2011 to 31
December 2016. The data is categorized into different sections; (1) the remand and (2) the sentenced
population. The sentenced population is further subdivided into different categories, for the purpose
of this study, we shall be considering the category of sentence length of 4 years or more (excluding
indeterminate sentences).

Figure 4.1: The first 5 head of the data set

Figure 4.1 displays the first 5 rows of the data set. from the table, it is observed that the data were
collected monthly.

Figure 4.2: The Descriptive Statistics

Figure 4.2 gives the summary of the data set ranging from its minimum to it’s maximum.

12
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4.3 Regression Analysis

Linear Regression helps to model the relationship between two variables. i.e explanatory variable, and
the other is a dependent or response variable.

(a) Sentenced length of 4 years or more (b) The model and the line of best fit

Figure 4.3: The Regression model

Figure 4.3a shows a time plot of prisons population for the Sentenced length of 4 years or more, while
Figure 4.3b shows the fitted model and the line of best fit. From the plot, it is observed that most of
the point deviates from the line of best fit.

4.3.1 Decomposition. This is a way of breaking or simplifying time series data into systematic (level,
trend, and seasonality) and unsystematic components (noise), for a better understanding. From Figure
4.3a it is observed that the changes do not change over time, i.e the trend is linear and the linear
seasonality has the same frequency and amplitude over time. Hence Figure 4.4 shows an additive
decomposition.

y(t) = Level + Trend+ Seasonality +Noise

Figure 4.4: Time Series Decomposition of Sentence length of 4 years or more
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From the plot of Figure 4.4, we can see the evidence of trend, seasonality, and noise. (All these where
not visible by simply looking at Figure 4.3a) The trend shows a linear increase with time, and the
seasonality shows a sharp decrease in the prison population at the beginning of each year of 2011 -
2016, which is being represented by 1 - 6, but a sharp increase at the middle of each year. The presence
of seasonality and trend shows that the data is not stationary.

Due to the presence of seasonality and trend, there is a need to introduce the smoothing spline to
avoid the issue of over-fitting by using regularized regression. This involves minimizing a criterion that
includes both a penalty for the least squares error and roughness penalty.

4.3.2 Spline Functions. These are functions used to approximate nonlinear functions, this is achieved
by dividing the domain of the variable into contiguous intervals, after which we fit separate polynomials
within each range. Knots are placed at the interval endpoints where the polynomials are joined. Let
the interval be [x, y]

x = ξ0 < ξ1 · · · ξN < ξN+1 = y (4.3.1)

where the N knots ξ1 · · · ξN , for n = 1, 2 · · · , N are known as the inner knots. A spline of degree p
has the following properties.

(a) f is a piecewise polynomial such that on each interval [ξ1 · · · ξN ] is a polynomial of degree q

(b) f is p− 1 times continuously differentiable at the knots.

Generally, a spline of degree 1 is a piecewise linear function where the straight line segment connects
at the knots. A spline of degree 2 is a piecewise quadratic curve with continuous first derivative at the
knots. while a spline of degree 3 is a piecewise cubic function which has continuous first and second
derivatives at the knots.

A linear model is of the form
Yi = α+ βXi + ei

where i = 1 · · ·n α, β are model parameters i.e the intercept and slope of the line and Xi is the
explanatory or independent variable (Time), ei is an additive or the unpredictable quantity, Yi is the
response or dependent variable (Prison population of sentence length 4 year or more).

Now, introducing the spline function of time t with a degree of freedom (λ = 14)in order to control for
seasonality and trend we have

Yi = α+ (t, λ) + ei

From literature, λ is calculated as 3 ∗ n − 1, 3 to 7 degree of freedom per year has been justified as a
balance to provide adequate control for seasonality and trends in time, while n is the number of calender
years in the data (2011 - 2016). hence we have

3× 5− 1 = 14

From A.1 (Appendix), it is observed that the Adjusted R-square is 0.9991, which means that 99.91 %
of variation in the responds (prison population) variable is explained by the explanatory variable (Time)
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4.4 Summary of the fitted model

The Total Sum Of Square is the difference between the observation and the mean. This is given as

TSS =
∑
i

(yi − ȳ)2 = Syy

The Residual Sum Of Square is the difference between the observation and the fitted model. This is
given as

RSS =
∑
i

(yi − ŷ)2 = Syy −
S2
xy

Sxx

The Measure of model fit shows how much variation in the data our model has explained. This is
given as

R2 = 1− RSS

TSS

For the simple linear model R2 = r2. hence, we show that R2 = r2, where R2 is the coefficient of
determination and r is the sample correlation coefficient.

R2 = 1− RSS

TSS
= 1−

Syy −
S2
xy

Sxx

Syy
=

(Sxy)
2

Sxx.Syy
= r2

4.5 Assumptions of a Linear Model

To make sure that the model and techniques we have used are the appropriate ones, we have to apply
the general methods for checking regression models. And this is known as the model assumptions [1].

1. The error term has a population mean of zero, meaning that for a model to be unbiased, the
average value of the error term must equal zero.

2. The error term has a constant variance (Homoscedasticity), that is, it must not start out little
and then start spreading of vice versa

3. The errors are independent, which implies that the knowledge of the error attached to one obser-
vation does not give us any information about the error attached to another.

4. The error term is normally distributed, This allows us to describe the variation in the model’s
parameter estimates, which in turn enable us to make inference about the population we are
considering.
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4.6 Residuals plot

Once a regression model has been fitted, there is a need to examine the residuals, that is, the deviations
from the fitted line to the observed values. With this we can investigate the validity of the assumption
that a linear relationship exists between the response variable and the explanatory variable. The residuals
plot reveals the true relationship between the variables. It amplifies the presence of outliers, as well as
the possibility of a non-linear relationship among the variables.

(a) The Residuals Plot (b) The normal Q-Q Plot

Figure 4.5: The Residuals alongside the Normal QQ- Plot for the linear regression model

From the residual plot in Figure 4.5a, it is observed that it the first two assumptions are met, i.e the
population of the error term is almost at zero (this can be seen from the red line drawn horizontally).
and also the error term does have a constant variance, (Homoscedasticity). Also from 4.5b, the normal
Q-Q plot also meets the fourth assumption which states that the error term is normally distributed.
Although we can still see some data points falling off the line especially at the left tail of the plot.

4.6.1 Forecasting with the Regression Model. Figure 4.14 shows the forecast for the next 27 month,
alongside the validating data set. To investigate if the forecast errors are normally distributed with mean
zero and constant variance, there is a need to make a time plot of the residual and the fitted model as
well as a histogram of the forecast errors.

(a) The Residuals Plot (b) The normal Q-Q Plot

Figure 4.6: The Residuals alongside the Normal QQ- Plot



Section 4.7. Time Series Analysis Page 17

In Figure 4.6a, the time plot of the forecast errors shows that the variance of the forecast errors seems
to be roughly constant over time although there seems slightly higher variance at the beginning and
towards the tail end i.e from 2011 to about middle of 2012 and then it became a bit constant but started
rising from 2015 up till the end of 2016. Figure 4.6b shows that the histogram of the forecast errors are
roughly normally distributed and the mean seems to be close to zero. Hence the above model seems to
provide an adequate predictive model for the prisons population of sentence length of 4 years or more.

4.7 Time Series Analysis

As discussed in chapter 3, let’s consider another model, a time series analysis is the analysis of a series
of observations collected over time. Since the data had been decomposed in figure 4.4 we can also
confirm the presence of seasonality and trend by also plotting its ACF and PACF.

(a) The ACF Plot (b) The PACF Plot

Figure 4.7: The Correlation Functions

Figure 4.7a shows the ACF plot of the prison population for sentence length of 4 years or more for lag
36, i.e 3 years, the plot shows the presence of seasonality after 2 years, this is noticed at lag 24. The
presence of the trend is also visible as there is a downward decrease in the lags. The PACF in 4.7 shows
that there is a partial autocorrelation at lag 1, i.e a sharp cut-off at lag 1

4.8 Data Differencing

Since the data is nonstationary, we proceed to differencing the data. i.e creating a new series. where

Y ′t = Yt − Yt−1

Since the first differencing does not give a stationary data, we proceed to the 2nd differencing, we have

Y ′′t = Y ′t − Y ′t−1

Y ′′ = Yt − Yt−1 − Yt−1 − Yt−2
Y ′′ = Yt − 2Yt−1 − Yt−2
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(a) The First Difference (b) The Second Difference

Figure 4.8: The First and Second differencing of the data

Figure 4.8a is the 1st difference of the data set, the mean is still not close to zero, i.e, not stationary.
Figure 4.8b shows the plot of the 2rd difference of the data set. From the plot, the time series of
2rd differences appears to be stationary in mean and variance, hence an ARIMA(p,2,q) model seems
to provide an adequate predictive model for the prisons population of sentence length of 4 years or more.

(a) ACF of 2rd Difference (b) PACF of 2rd Difference

Figure 4.9: The ACF and PACF of the 2nd differencing

4.9 Model Identification

Having differenced the data and plotted the ACF and PACF, how then can we identify the model to
use? Just as we discussed in the previous chapter the ACF helps to know the number of lag ”p” while
PACF helps to identify the number of lag ”q” From the plot above, p = 0,1,4 and q= 1,2,3 since we
have differenced twice, then d = 2
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4.9.1 Hints to Identifying a model.

1. if the PACF of the differenced series displays sharp cut-off while the ACF decays slowly, it implies
that the autocorrelation pattern is better explained more by adding AR terms.

2. if the PACF of the differenced series displays sharp cut-off and or the first lag is positive, then
consider adding an AR term to the model

3. if the ACF of the differenced series displays sharp cut-off and or the first lag is negative, then
consider adding an MA term to the model [4].

Looking at the differenced ACF and PACF plot alongside the hint provided above, we can see that the
first lag of the differenced ACF is negative and there is also a sharp cut off between lag 1,2 3 and lag
4. Hence, we consider adding an MA model. Also, the differenced PACF shows a sharp cut off between
lag 2,3 and lag 4. Hence, we also consider adding an AR model.

4.10 Model Estimation

Having identified the model to use, how can we then estimate the best model? From p and q identified
earlier, we shall consider ARIMA (021), (022), (023), (121), (122), (123). Since we have so
many models to work with, we shall introduce the function auto.arima() in R. This function takes into
account the AIC and BIC values to determine the best combination of parameters. It also gives the
model with the important parameters.

Figure 4.10: The auto.arima model

4.11 Mathematical Formulation of The ARIMA Model

Starting with the backward shift operator, let’s consider

BZt = Zt−1 (4.11.1)

B causes the observation that it multiplies to be shifted backward in time by 1 period. i.e, for any time
series Y and any period t, increasing the power of B by 1 we have;

B2Zt = B(BZt) = B(Zt−1) = Zt−2 (4.11.2)
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Hence in general, for any integer n, it has the effect of shifting an observation backward by n periods.

BnZt = Zt−n

Recall from equation 3.5.1, let’s consider a simple example of the first-difference operation. Suppose
that z is the first difference of Z. Then, for any t

zt = Zt − Zt−1

= Zt −BZt
= (1−B)Zt

Since the first differenced series z is obtained by multiplying a factor of (1−B) to the original series Z

Hence multiplying a factor of (1−B)2 to the original series Z we’ll obtain the second differenced series.

(1−B)((1−B)Zt) = (1−B)2Zt

Therefore, generally multiplying by a factor of (1−B)d gives the dth difference of Z

4.11.1 The Seasonal ARIMA Model. From figure 4.10, the output of the auto.arima model indicates
a SARIMA Model, i.e ARIMA (0.2.1)(0,0,1)[12]. The seasonal ARIMA model incorporates both the
non-seasonal and seasonal factors in a multiplicative model. This is given as

ARIMA (p, d, q)× (P,D,Q)S

where p is the nonseasonal AR order, d is the non-seasonal differencing, q is the non-seasonal MA order,
P is the seasonal AR order, D is the seasonal differencing, Q is the seasonal MA order, and S is the
time span of repeating seasonal pattern [6].

The general multiplicative of a SARIMA Model is given as;

αP (Bs)βp(B)(1−B)d(1−Bs)D Zt = θq(B)γQ(Bs)et (4.11.3)

From the backward shift in equation 4.11.1, equation 4.11.3 can be further simplified as follows

αP (Bs) = 1− α1(B
s)− α2(B

2s)− · · · − αP (BPs) (4.11.4)

βp(B) = 1− β1(B)− β2(B2)− · · · − βp(Bp) (4.11.5)

θq(B) = 1− θ1(B)− θ2(B2)− · · · − θq(Bq) (4.11.6)

γQ(Bs) = 1− γ1(Bs)− γ2(B2s)− · · · − γQ(BQs) (4.11.7)

Equation 4.11.5 and 4.11.6 are known as the nonseasonal components of the model, while 4.11.4 and
4.11.7 are the seasonal components of the model.

Hence from the output in figure 4.10, SARIMA Model (0.2.1)(0,0,1)[12] can be calculated as follows;
where p= 0, d = 2, q = 1, P = 0, D = 0, Q = 1 and s= 12

Substituting these values into equation 4.11.3 we have

α0(B
12)β0(B)(1−B)2(1−B12)0Zt = θ1(B)γ1(B

12)et (4.11.8)

But α0(B
12) = 1; β0(B) = 1; (1−B12)0 = 1
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Hence we are left with
(1−B)2Zt = (1− θ1B)(1− γ1B12)et (4.11.9)

expanding equation 4.11.9, we have

(1− 2B +B2)Zt = (1− γ1B12 − θ1B − θ1γ1B13)et (4.11.10)

Recalling equation 4.11.1, and substituting in the above equation, we have;

Zt = 2Zt−1 − Zt−2 + et − γ1et−12 − θ1et−1 − θ1γ1et−13 (4.11.11)

Hence, equation 4.11.11 is the required model

4.12 Diagnostic Checking

1. Akaike Information Criterion:- Since the function auto.arima() takes into account the AIC and
BIC values to determine the best combination of parameters, hence the AIC is 838.93

2. Ljung-Box Test:- Using a statistical software ”R”, to implement the Ljung-Box Test with the
Box.test function. figure A.2 shows that the p-value which is 0.8562 is highly significant, There-
fore we do not reject H0, hence, we conclude that the correlations between the population series
values are zero. i.e the model is fine and does not show a lack of fit.

3. ACF and PACF plots of Residual

(a) ACF of Model Residuals (b) PACF of Model Residuals

Figure 4.11: The Model Residuals

From the above ACF and PACF plots of the residual, it is observed that all the lags lie within the
95% confidence interval in both plots, and also the PACF shows no autocorrelation.
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4. Time plot and histogram of Residual

(a) Residuals of the fitted model (b) Histogram of the residuals

Figure 4.12: The Model Residuals

From the time plot of the residuals in figure 4.12a, we observed that the randomness was within
mean of zero with a constant variance, the histogram in figure 4.12b also shows that the residuals
are normally distributed with mean of zero.

4.13 Predictive Analysis

Having conducted the diagnostic checking and seen that the chosen model does not violate any of the
rules, predictions can be done.

Figure 4.13: 27 Months Forecast of he Prison Population using the SARIMA Model
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Figure 4.13 is the 27 months forecast of the prison population using the ARIMA (0,2,1)(0,0,1)[12]
model with 80% and 95% confidence interval. Using the prison population starting from January 2011
to December 2016, and the forecasting for January 2017 to March 2019. 2,4,6 represents 2012, 2014,
and 2016 respectively.The thick blue line is the actual forecast, while the dark ash region represents the
95% confidence interval, and the fainted ash region represents the 80% confidence interval.

4.14 Forecast Accuracy

It is one thing to make predictions, but it is another thing for the predictions to be accurate. Below are
some of the ways to test if the forecast is accurate.

Validation Test:- This is checking if the forecasted values also tallies with a set aside observation or
data which is not part of the training set.

Figure 4.14: Prison Population Forecast for 25 Months

Figure 4.14 shows the forecast for 27 more months, the Actual is the validation set. Model 1 is the
forecast from the Regression Model with RMSE of 396, Model 2 is the forecast from the Seasonal
Arima Model with RMSE of 231, and Model 3 is the forecast from the stock flow model with RMSE
of 5795. we observed that Model 2 which is the SARIMA model performed better than the others.
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4.15 The Stock Flow Model

The two models studied above (Regression and Arima) predicted the prisons population without taking
into account how the offenders are being admitted and how they are being released. To cater for that,
there is a need for a stock-flow model figure 1.3 describes this.

This is given as;
Pt+1 = IPt + Pt −OPt (4.15.1)

Where at Pt+1 is the new closing population stock estimated by adding the in-flow of offenders IP
from time t to t+ 1 with the initial or starting prison population stock P at time t and subtracting the
out-flow population OP at time t to t+1, and the result obtained (closing stock) becomes the (starting
stock) for the next prison population. Example

Let’s consider the prison population by type of custody, age group and sex for sentence length of 4 years
or more(excluding indeterminate).

If the prison admission (in-flow) for October - December 2017 is 2086, and the prison population
(starting stock) as at 30 September 2017 is 33039 and 2178 (out-flow) were released as at October
- December 2017, what would be the closing stock for the month of October - December?

From equation 4.15.1 we have;
Pt+1 = 2086 + 33039− 2178 (4.15.2)

NPt+1 = 32947

Using this example, we shall predict for more quarters by considering the percentage change (increase
or decrease) across each quarter.

Figure 4.15: The Stock Flow Model of The Prisons Population Recorded Quarterly
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Figure 4.15 displays the stock flow model recorded quarterly from January 2015 to December 2018. and
predictions were made for January 2019 to December 2022.

The in-flow, stock, and out-flow from Jan-March 2015 was calculated using the formula from the
equation 4.15.1 Where IPt = 2037, OPt = 2022 and Pt−1 = 28116 which is the closing stock of
prison population as at 31st December 2014. The result obtained in cell B5 now becomes the closing
stock for Jan-Mar, but a starting stock for Apr-June, and this continues till Oct-Dec 2018.

Now, there is a need to know the percentage change in the in-flow from one quarter to the next, and
this is calculated using the formula below;

(t÷ t−1)− 1 for IP at OP

i.e the percentage change between Apr-Jun and Jan-mar is given as

IPt
IPt−1

=
2150

2037
− 1 = 5.55%

Meaning that there is a 5.55% increase in the population of offenders coming in from the 1st quarter
to the 2nd quarter in the year 2015.

The cell labeled purple is the Average overall percentage of the offenders coming in from Jan 2015 to
Dec 2018, which is 0.19%

This same procedure is also used in calculating the outflow.

OPt
OPt−1

=
2054

2022
− 1 = 1.58%

Meaning that there is a 1.58% increase in the population of prisoners being released from the 1st quarter
to the 2nd quarter in the year 2015.

The cell labeled green is the Average overall percentage of the prison population being released from
Jan 2015 to Dec 2018, which is 0.75%

Predictions

From the steps above, we can make predictions.

The inflow for Jan-Mar 2019 = IPt−1× (1 + Average %IP)

= 2031(1+ 0.19%)

= 2034.762

The Outflow for Jan-Mar 2019 = OPt−1× (1 + Average %OP)

= 2224(1+ 0.75%)

= 2240.671

Hence, the closing stock of Jan-Mar 2019 is calculated using equation 4.15.1

= 27156.09

Model Validation Comparing the estimated closing stock of each month with its actual values in figure
4.14. It is observed that the closing stock obtained is a bit lesser than the actual values. This might be
as a result of some factors not considered in the model, i.e Recidivism
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4.16 Recidivism

This is defined as the tendency of an ex-prisoner to get rearrested again after being released from prison.
According to the National Statistics on Recidivism, it was recorded that in England and Wales as of
2005, 41.6% of adult ex-prisoners re-offended within a year of being released from custody. Between
April 2010 and March 2011, 56,000 adult offenders were released from prison, but out of this number,
around 26,000 were proven to have committed another offense within 1 year.

Figure 4.16: Recidivism rates for adult offenders in England and Wales

Figure 4.16 shows the population of ex-offenders by custodial sentence length proven to have committed
a re-offense. From the plot, it is observed that as at the year 2000, almost 30% of re-offenders rate
was recorded for the sentence length of 4 years or more, but at April 2010 to March 2011, there was a
slight increase in percentage. Thus there is tendency that the re-offenders be sent back to prison again,
thereby increasing the prison population.

Thus, the simple stock flow model can be modified to include the number of ex-prisoners who finds their
way back into the prison, thereby increasing the prison population. I would undertake further work to
implement it as future research. Hence equation 4.15.1 can then be modified by adding another variable
to give;

Pt+1 = IPt +RPt + Pt−1 −OPt (4.16.1)

Where RPt is the Recidivism population. Hence, model 1.3 can be modified to the model below.
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Stock

In-Flow Out-Flow

Recidivism

Figure 4.17: The Stock Flow Model of the Prison Population with Recidivism

Recidivism, one of the most fundamental concepts in criminal justice can be caused by many factors
which include;

(a) Unemployment:- The absence of employment is a consistent factor in recidivism and probation
violations, also, an ex-convict finds it difficult to gain employment opportunities. Research shows
that 1 year after release, at least 60% of ex-prisoners were unable to gain employment nationally,
according to a study by Bushway and Reuter

(b) Love:- Constant love and care from family is another main factor in the formation of individual
and social especially for ex-convict. Prisoners’ recidivism rates are associated with the amount of
love, care, and support gotten from family, friend and peer groups.

(c) Socio-Economic Factors:- In terms of gender, men are more likely to return to prison because of
criminal peer associations. e,g carrying weapons, alcohol abuse, and aggressive feelings. Also, age
is another factor. According to the United States Sentencing Commission 2004, research shows
that youths are more likely to offend than older people. Out of all offenders who are under age
21, the recidivism rate is 35.5%, while offenders over age 50 have a recidivism rate of 9.5% .

In addition to what has been listed above, other contributions of recidivism are poverty, lack of in-
come, poor living conditions, divorce or separation, and death of one or both parents are other pushing
factors for recidivists to re-offend and other psychological problems like anxiety, depression, addiction,
aggressiveness, lack of adequate rehabilitation and reintegration services are other factors contributing
for recidivism.



5. Conclusion

After the analysis performed, conclusions were drawn on the findings. Possible recommendations were
provided as well as further research on the work done.

5.1 Conclusion

The aim of this study was to predict the prison population using statistical methods. Three methods
were used to predict the prison population Regression Analysis, Time Series Analysis and a Stock
flow Model. For the regression analysis, a linear model was considered, while a ARIMA model was
considered for the time series analysis. For the stock flow model, we considered the simple model
without recidivism after which we went on and developed a more complex stock and flow model with
recidivism.

The prediction performance of regression and arima model was improved through spline and seasonal
and nonseasonal differencing respectively. The results presented in table 4.14 show that the Arima
Model provides the best prediction performance because its RSS is smaller, furthermore, Ljung-Box
test was performed to test if the residual ACF at different lag times was significantly different from
zero, In addition, the normality of the model residuals’ distribution also confirmed the model’s fitness.
After this, a forecast for future values from January 2017 to March 2019 was made. The result were
presented in table 4.14. Hence, our result reveals that ARIMA (0,2,1)(0,0,1)[12] model was appropriate
for predicting the prison population of sentence length of 4 years or more(excluding the indeterminate).
The stock flow model has its uniqueness as it takes into consideration how the offenders are coming in,
their sentence, and how they are released, which was not as in the case of regression and arima model.
These methods can be applied to a different part of the prison population but different parameters would
be needed.

5.2 Future work

This section entails some possible improvements to the models and the general approach to enhance
our work. For this study, there are three main suggested extensions to this work.

The first extension is the choice in linear regression methods. For this study, we used the natural cubic
spline to account for seasonality and trend in the time series data, more research can be conducted to
better improve the model for better predictions.

The second extension is the ARIMA model, from 4.13 it is observed that the forecast confidence interval
tends to deviate from the forecast point with time, Hence the model can be improved upon for long
time predictions.

The last extension is on the stock flow model, as illustrated in figure 4.17, there is a need to introduce
the percentage of recidivism into the model developed in 1.3. with an addition of the recidivist, we can
better estimate the end stock. Also considering the distribution of the outflow (OP ) and the Inflow
(IP ) and then simulation it can also tell a lot about the prison population.
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5.3 Recommendation

The SARIMA (0,2,1)(0,0,1)[12] model has been designed to help policy makers and planners to help
evaluate the effect of different policies on the numbers of offenders coming in and out of the prison
population. Users of the tools provided above can make informed judgments about the consequences
of an increase or decrease in the prisons population. The stock flow model shows how sentence lengths
(which determines the stock) and recidivism are dynamic, factors outside of prison might play a vital
role in the reduction of recidivism than prison itself. This is because constant follow-up efforts made on
ex-prisoners might have a greater rehabilitative effect.

Furthermore, aside from the prisons population forecasting has always been very important in decision
making almost at every level and sector of the economy, especially in price forecast, which is very
critical to the market participant making production and marketing decisions. Early prediction about
the probable price of a commodity will help the policymakers regarding the probable fluctuation in market
price. this would help make proper monitoring and planning. Policy makers can get prior information
about the possible future prices through price forecasting by time series analysis using the (ARIMA)
model which is one of the popular forecasting model. The results from the time series analysis above
can help give valuable information when formulating future policies.



Appendix A. Some additional data

Figure A.1: The summary of the Linear Model

Figure A.2: The Box-Ljung Test for the Time series model
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